
CSE 114A: Fall 2023

Foundations of Programming
Languages

Owen Arden
UC Santa Cruz

Higher-Order Functions

Based on course materials developed by Nadia Polikarpova

Plan for this week

Last week:

• user-defined data types
◦ and how to manipulate them using pattern

matching and recursion
• how to make recursive functions more efficient with tail

recursion

This week:

• code reuse with higher-order functions (HOFs)

• some useful HOFs: map, filter, and fold

2

Recursion is good

• Recursive code mirrors recursive data

◦ Base constructor -> Base case
◦ Inductive constructor -> Inductive case

(with recursive call)

• But it can get kinda repetitive!

3

Example: evens

Let’s write a function evens:
-- evens [] ==> []
-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens [] = ...
evens (x:xs) = ...

4

Example: four-letter words

Let’s write a function fourChars:
-- fourChars [] ==> []
-- fourChars ["i","must","do","work"] ==> ["must","work"]
fourChars :: [String] -> [String]
fourChars [] = ...
fourChars (x:xs) = ...

5

Yikes, Most Code is the Same!
foo [] = []
foo (x:xs)
 | x mod 2 == 0 = x : foo xs
 | otherwise = foo xs

foo [] = []
foo (x:xs)
 | length x == 4 = x : foo xs
 | otherwise = foo xs

Only difference is condition
• x mod 2 == 0 vs length x == 4

6

Moral of the day

D.R.Y. Don’t Repeat Yourself!

Can we

• reuse the general pattern and
• substitute in the custom condition?

7

HOFs to the rescue!

General Pattern

• expressed as a higher-order function
• takes customizable operations as arguments

Specific Operation

• passed in as an argument to the HOF

8

The “filter” pattern

9

Use the filter pattern
to avoid duplicating code!

The “filter” pattern

General Pattern

• HOF filter
• Recursively traverse list and pick out elements that satisfy a predicate

Specific Operation

• Predicates isEven and isFour

10

Let’s talk about types
-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs
 where

 isEven :: Int -> Bool
 isEven x = x `mod` 2 == 0
filter :: ???

11

Let’s talk about types
-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs
 where

 isEven :: Int -> Bool
 isEven x = x `mod` 2 == 0
filter :: ???

12

Let’s talk about types
-- fourChars ["i","must","do","work"] ==> ["must","work"]
fourChars :: [String] -> [String]
fourChars xs = filter isFour xs
 where

 isFour :: String -> Bool
 isFour x = length x == 4
filter :: ???

13

Let’s talk about types

Uh oh! So what’s the type of filter?

filter :: (Int -> Bool) -> [Int] -> [Int] -- ???

filter :: (String -> Bool) -> [String] -> [String] -- ???

• It does not care what the list elements are
◦ as long as the predicate can handle them

• It’s type is polymorphic (generic) in the type of list elements

-- For any type `a`
-- if you give me a predicate on `a`s
-- and a list of `a`s,
-- I'll give you back a list of `a`s
filter :: (a -> Bool) -> [a] -> [a]

14

Example: all caps

Lets write a function shout:

-- shout [] ==> []
-- shout ['h','e','l','l','o'] ==> ['H','E','L','L','O']
shout :: [Char] -> [Char]
shout [] = ...
shout (x:xs) = ...

15

Example: squares
Lets write a function squares:

-- squares [] ==> []
-- squares [1,2,3,4] ==> [1,4,9,16]
squares :: [Int] -> [Int]

squares [] = ...
squares (x:xs) = ...

16

Yikes, Most Code is the Same!
Lets rename the functions to foo:

-- shout
foo [] = []
foo (x:xs) = toUpper x : foo xs

-- squares
foo [] = []
foo (x:xs) = (x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

17

The “map” pattern

General Pattern

• HOF map

• Apply a transformation f to each element of a list

Specific Operations

• Transformations toUpper and \x -> x * x

18

The map Pattern

The “map” pattern

map f [] = []
map f (x:xs) = f x : map f xs
Lets refactor shout and squares

shout = map ...

squares = map ...

19

QUIZ

20

http://tiny.cc/cse116-map-ind

QUIZ

21

http://tiny.cc/cse116-map-grp

The “map” pattern
-- For any types `a` and `b`
-- if you give me a transformation from `a` to `b`
-- and a list of `a`s,
-- I'll give you back a list of `b`s
map :: (a -> b) -> [a] -> [b]

Type says it all!

• The only meaningful thing a function of this type can do is apply its first
argument to elements of the list (Hoogle it!)

Things to try at home:

• can you write a function map' :: (a -> b) -> [a] -> [b] whose
behavior is different from map?

• can you write a function map' :: (a -> b) -> [a] -> [b] such
that map' f xs returns a list whose elements are not in map f xs?

22

QUIZ

23

http://tiny.cc/cse116-quiz-ind

QUIZ

24

http://tiny.cc/cse116-quiz-grp

Don’t Repeat Yourself

Benefits of factoring code with HOFs:

• Reuse iteration pattern

◦ think in terms of standard patterns

◦ less to write

◦ easier to communicate

• Avoid bugs due to repetition

25

Recall: length of a list
-- len [] ==> 0
-- len ["carne","asada"] ==> 2
len :: [a] -> Int
len [] = 0

len (x:xs) = 1 + len xs

26

Recall: summing a list
-- sum [] ==> 0
-- sum [1,2,3] ==> 6
sum :: [Int] -> Int
sum [] = 0

sum (x:xs) = x + sum xs

27

Example: string concatenation
Let’s write a function cat:

-- cat [] ==> ""
-- cat ["carne","asada","torta"] ==> "carneasadatorta"
cat :: [String] -> String

cat [] = ...
cat (x:xs) = ...

28

Can you spot the pattern?
-- len
foo [] = 0
foo (x:xs) = 1 + foo xs

-- sum
foo [] = 0
foo (x:xs) = x + foo xs

-- cat
foo [] = ""
foo (x:xs) = x ++ foo xs

pattern = ...

29

The “fold-right” pattern

General Pattern

• Recurse on tail
• Combine result with the head using some binary operation

30

The foldr Pattern

The “fold-right” pattern

foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

Let’s refactor sum, len and cat:

sum = foldr

cat = foldr

len = foldr

Factor the recursion out!

31

The “fold-right” pattern

You can write it more clearly as

sum = foldr (+) 0
cat = foldr (++) ""

32

The “fold-right” pattern

You can write it more clearly as

sum = foldr (+) 0
cat = foldr (++) ""

33

n

QUIZ

34

http://tiny.cc/cse116-foldeval-ind

QUIZ

35

http://tiny.cc/cse116-foldeval-grp

The “fold-right” pattern

foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

foldr (:) [] [1,2,3]
 ==> (:) 1 (foldr (:) [] [2, 3])
 ==> (:) 1 ((:) 2 (foldr (:) [] [3]))
 ==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [] [])))

 ==> (:) 1 ((:) 2 ((:) 3 []))
 == 1 : (2 : (3 : []))
 == [1,2,3]

36

The “fold-right” pattern
foldr f b [x1, x2, x3, x4]
 ==> f x1 (foldr f b [x2, x3, x4])
 ==> f x1 (f x2 (foldr f b [x3, x4]))
 ==> f x1 (f x2 (f x3 (foldr f b [x4])))
 ==> f x1 (f x2 (f x3 (f x4 (foldr f b []))))
 ==> f x1 (f x2 (f x3 (f x4 b)))

Accumulate the values from the right

For example:

foldr (+) 0 [1, 2, 3, 4]
 ==> 1 + (foldr (+) 1 [2, 3, 4])
 ==> 1 + (2 + (foldr (+) 0 [3, 4]))
 ==> 1 + (2 + (3 + (foldr (+) 0 [4])))
 ==> 1 + (2 + (3 + (4 + (foldr (+) 0 []))))
 ==> 1 + (2 + (3 + (4 + 0)))

37

QUIZ

38

http://tiny.cc/cse116-foldtype-ind

QUIZ

39

http://tiny.cc/cse116-foldtype-grp

The “fold-right” pattern
Is foldr tail recursive?

Answer: No! It calls the binary operations on the results of the recursive call

40

What about tail-recursive versions?
Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR = ...

41

What about tail-recursive versions?
Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR xs = helper 0 xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (acc + x) xs

42

What about tail-recursive versions?
Lets run sumTR to see how it works

sumTR [1,2,3]
 ==> helper 0 [1,2,3]
 ==> helper 1 [2,3] -- 0 + 1 ==> 1
 ==> helper 3 [3] -- 1 + 2 ==> 3
 ==> helper 6 [] -- 3 + 3 ==> 6
 ==> 6

Note: helper directly returns the result of recursive call!

43

What about tail-recursive versions?
Let’s write tail-recursive cat!

catTR :: [String] -> String
catTR = ...

44

What about tail-recursive versions?
Let’s write tail-recursive cat!

catTR :: [String] -> String
catTR xs = helper "" xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (acc ++ x) xs

45

What about tail-recursive versions?
Lets run catTR to see how it works

catTR ["carne", "asada", "torta"]
 ==> helper "" ["carne", "asada", "torta"]
 ==> helper "carne" ["asada", "torta"]
 ==> helper "carneasada" ["torta"]
 ==> helper "carneasadatorta" []
 ==> "carneasadatorta"

Note: helper directly returns the result of recursive call!

46

Can you spot the pattern?
-- sumTR
foo xs = helper 0 xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (acc + x) xs

-- catTR
foo xs = helper "" xs

 where
 helper acc [] = acc
 helper acc (x:xs) = helper (acc ++ x) xs

pattern = ...
47

The “fold-left” pattern

General Pattern

• Use a helper function with an extra accumulator argument

• To compute new accumulator, combine current accumulator
with the head using some binary operation

48

The foldl Pattern

The “fold-left” pattern
foldl f b xs = helper b xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (f acc x) xs

Let’s refactor sumTR and catTR:

sumTR = foldl

catTR = foldl

Factor the tail-recursion out!

49

QUIZ

50
http://tiny.cc/cse116-foldl-ind

QUIZ

51
http://tiny.cc/cse116-foldl-grp

QUIZ

52
http://tiny.cc/cse116-foldl2-ind

QUIZ

53
http://tiny.cc/cse116-foldl2-grp

The “fold-left” pattern
foldl f b [x1, x2, x3, x4]
 ==> helper b [x1, x2, x3, x4]
 ==> helper (f b x1) [x2, x3, x4]
 ==> helper (f (f b x1) x2) [x3, x4]
 ==> helper (f (f (f b x1) x2) x3) [x4]
 ==> helper (f (f (f (f b x1) x2) x3) x4) []
 ==> (f (f (f (f b x1) x2) x3) x4)
Accumulate the values from the left

For example:

foldl (+) 0 [1, 2, 3, 4]
 ==> helper 0 [1, 2, 3, 4]
 ==> helper (0 + 1) [2, 3, 4]
 ==> helper ((0 + 1) + 2) [3, 4]
 ==> helper (((0 + 1) + 2) + 3) [4]
 ==> helper ((((0 + 1) + 2) + 3) + 4) []
 ==> ((((0 + 1) + 2) + 3) + 4)

54

Left vs. Right
foldl f b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left

foldr f b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right

For example:

foldl (+) 0 [1, 2, 3] ==> ((0 + 1) + 2) + 3 -- Left

foldr (+) 0 [1, 2, 3] ==> 1 + (2 + (3 + 0)) -- Right

Different types!

foldl :: (b -> a -> b) -> b -> [a] -> b -- Left

foldr :: (a -> b -> b) -> b -> [a] -> b -- Right

55

Useful HOF: flip
-- you can write
foldl (\xs x -> x : xs) [] [1,2,3]

-- more concisely like so:
foldl (flip (:)) [] [1,2,3]
What is the type of flip?

flip :: (a -> b -> c) -> b -> a -> c

56

Useful HOF: compose
-- you can write
map (\x -> f (g x)) ys

-- more concisely like so:
map (f . g) ys

What is the type of (.)?

(.) :: (b -> c) -> (a -> b) -> a -> c

57

Higher Order Functions
Iteration patterns over collections:

• Filter values in a collection given a predicate
• Map (iterate) a given transformation over a collection
• Fold (reduce) a collection into a value, given a binary

operation to combine results

Useful helper HOFs:

• Flip the order of function’s (first two) arguments
• Compose two functions

58

Higher Order Functions
HOFs can be put into libraries to enable modularity

• Data structure library implements map, filter, fold for its
collections

◦ generic efficient implementation

◦ generic optimizations: map f (map g xs) --> map
(f.g) xs

• Data structure clients use HOFs with specific operations

◦ no need to know the implementation of the collection

Enabled the “big data” revolution e.g. MapReduce, Spark

59

60

That’s all folks!

